type
status
date
slug
summary
tags
category
icon
password
质数,也称为素数,是只能被1和自身整除的大于1的自然数。在数学领域,质数的研究一直是一个重要课题,它在密码学、编码理论等多个计算机科学分支中扮演着核心角色。为了高效地找出一定范围内的所有质数,研究者们发明了多种质数筛选算法。这些算法在提高计算效率、节约计算资源方面有着不可小觑的作用。

常用的质数筛算法

一、试除法

基本概念

试除法是最直观的质数判断方法,它通过逐一试除,检验目标数是否只能被1和自身整除。这种方法易于理解,但在大规模的质数筛选任务中效率较低。

算法解释

试除法的步骤相对简单:对于每一个待检验的数n,我们尝试用2到√n之间的所有自然数去除n。如果n不能被这些自然数整除,则n是质数;否则,n不是质数。

代码示例

二、埃拉托斯特尼筛法

基本概念

埃拉托斯特尼筛法,亦称埃氏筛,是一种经典的筛选质数方法。它的基本思想是从小到大依次标记倍数,未被标记的即为质数。
相比于试除法,埃氏筛的效率更高,尤其适用于筛选较大范围内的质数。

算法解释

埃氏筛的步骤可以分为以下几个阶段:
  1. 创建一个布尔数组,长度为筛选范围上限加一,初始时所有元素设为未标记状态(即表示为质数)。
  1. 从2开始,对每一个未被标记的数i,将其所有的倍数2i, 3i, 4i,...标记为已标记状态(即非质数)。
  1. 重复步骤2,直到筛选范围内所有数被检验完毕。

代码示例

三、欧拉筛法

基本概念

欧拉筛法,又称线性筛,是对埃氏筛的改进。其核心思想是每个合数只被其最小质因数筛选一次,从而达到线性时间复杂度,适合筛选极大范围内的质数。

算法解释

欧拉筛法的步骤如下:
  1. 初始化质数列表和布尔数组,布尔数组用于标记非质数。
  1. 遍历每个数i,如果i是质数,则将其添加到质数列表中。
  1. 对于每个质数p和当前数i,如果p*i超过筛选范围或者p大于i的最小质因数,则停止标记。
  1. 重复步骤2和3,直到筛选结束。

代码示例

总结

质数筛算法是数论和计算机科学中的基础工具,它们在不同的应用场景下有着重要的作用。
试除法直观易懂,但效率较低;
埃拉托斯特尼筛法效率较高,适合中等规模的筛选;
欧拉筛法则以其线性时间复杂度在大规模筛选中表现出色。
算法解惑:并查集算法解惑:水塘抽样
Loading...
VyronLee
VyronLee
不折腾会死星人
最新发布
漫谈C# Language Version、.Net Framework、Mono、.Net Standard以及.Net Core
2024-4-18
多种导入格式图片内存占用对比
2024-4-12
C#基础:抽象类与接口
2024-4-12
UI 优化要点
2024-4-11
算法解惑:前缀和
2024-4-11
算法解惑:水塘抽样
2024-4-11